CLEAN, RELIABLE POWER ON DEMAND
The Energy Server 5 delivers clean power that reduces emissions and energy costs. The modular architecture enables the installation to be tailored to the actual electricity demand, with a flexibility to add servers as the load increases. The Energy Server 5 actively communicates with Bloom Energy's network operations centers so system performance can be monitored 24 hours per day, 365 days per year.

INNOVATIVE TECHNOLOGY
Utilizing solid oxide fuel cell (SOFC) technology first developed for NASA's Mars program, the Energy Server 5 produces clean power at unprecedented efficiencies, meaning it consumes less fuel and produces less CO₂ than competing technologies. Additionally, no water is needed under normal operating conditions.

ALL-ELECTRIC POWER
The Energy Server 5, which operates at a very high electrical efficiency, eliminates the need for complicated and costly CHP systems. Combining the standard electrical and fuel connections along with a small footprint and sleek design, the Energy Server 5 is the most deployable fuel cell solution on the market.

CONTROLLED AND PREDICTABLE COST
By providing efficient on-site power generation, the economic and environmental benefits are central to the Energy Server 5 value proposition. Bloom Energy customers can lock in their long term energy costs and mitigate the risk of electricity rate increases. The Energy Server 5 has been designed in compliance with a variety of safety standards and is backed by a comprehensive warranty.

About Bloom Energy
Bloom Energy is making clean, reliable energy affordable. Our unique on-site power generation systems utilize an innovative fuel cell technology with roots in NASA's Mars program. By leveraging breakthrough advances in materials science, Bloom Energy systems are among the most efficient energy generators, providing for significantly reduced operating costs and dramatically lower greenhouse gas emissions. Bloom Energy Servers are currently producing power for many Fortune 500 companies including Apple, Google, NSA, Walmart, AT&T, eBay, Staples, as well as notable non-profit organizations such as Caltech and Kaiser Permanente.

Headquarters:
Sunnyvale, California

For More Information:
www.bloomenergy.com
Technical Highlights (ES5-AA2AAA)

Outputs
- Nameplate power output (net AC): 262.5 kW
- Base load output (net AC): 250 kW
- Electrical connection: 480 V, 3-phase, 60 Hz

Inputs
- Fuels: Natural gas, directed biogas
- Input fuel pressure: 10-18 psig (15 psig nominal)
- Water: None during normal operation

Efficiency
- Cumulative electrical efficiency (LHV net AC)*: 65-53%
- Heat rate (HHV): 5,811-7,127 Btu/kWh

Emissions
- NOx: < 0.01 lbs/MWh
- SOx: Negligible
- CO: < 0.05 lbs/MWh
- VOCs: < 0.02 lbs/MWh
- CO2: @ stated efficiency, 679-833 lbs/MWh on natural gas; carbon neutral on directed biogas

Physical Attributes and Environment
- Weight: 13.6 tons
- Dimensions (variable layouts): 14' 9" x 8' 8" x 7' 0" or 29' 4" x 4' 5" x 7' 5"
- Temperature range: -20° to 45° C
- Humidity: 0% - 100%
- Seismic vibration: IBC site class D
- Location: Outdoor
- Noise: < 70 dBA @ 6 feet

Codes and Standards
- Complies with Rule 21 interconnection and IEEE1547 standards
- Exempt from CA Air District permitting; meets stringent CARB 2007 emissions standards
- An Energy Server is a Stationary Fuel Cell Power System. It is Listed by Underwriters Laboratories, Inc. (UL) as a ‘Stationary Fuel Cell Power System’ to ANSI/CSA FC1-2014 under UL Category IRGZ and UL File Number MH45102.

Additional Notes
- Access to a secure website to monitor system performance & environmental benefits
- Remotely managed and monitored by Bloom Energy
- Capable of emergency stop based on input from the site

* 65% LHV efficiency verified by ASME PTC 50 Fuel Cell Power Systems Performance Test